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ABSTRACT

A new ichnological study was carried out on the dinosaur tracks 
from the Lavini di Marco ichnosite (Trentino-Alto Adige/Südtirol, 
NE Italy), on the framework of a joint project between the Sapienza 
University of Rome and the MUSE - Sciences Museum of Trento, with 
the cooperation of the Geological Survey and the Fire Department 
of the Autonomous Province of Trento. The project consisted of a 
new analysis, made possible through modern digital technologies, 
of the Lower Jurassic tracks attributed to theropod and sauropod 
dinosaurs. Additionally, it included the realization of a geothematic 
map of the entire site, representing the objective of this contribution. 
Two different approaches were used during the ichnological 
mapping: i) traditional methods and ii) aerial- and close-range 
photogrammetry. Aerial photogrammetry was performed using two 
distinct drones, obtaining orthophotos and orthoplanes of the tracks-
bearing horizons, to produce a detailed geothematic map. Close-
range photogrammetry led to the production of more than seventy 
3D color-coded models of the best-preserved dinosaur footprints. 
The map was produced in digital vector format with different levels 
of knowledge. The final geothematic map represents a complete 
multilayer documentation that will be useful for future work of 
conservation, dissemination, and valorization of the tracksite.

Keywords: Hettangian, dinosaur footprints, aerial 
photogrammetry, drones, geothematic map, Italy.

INTRODUCTION

The Lavini di Marco ichnosite is located in Trentino-Alto 
Adige/Südtirol (NE Italy), about 30 km south of Trento, in 
the southern sector of the Adige Valley (i.e., Lagarina Valley; 

central-eastern Southern Alps; Fig.  1). It was discovered 
in 1989 by Luciano Chemini, being the subject of several 
studies (Leonardi and Lanzinger, 1992; Leonardi and 
Avanzini, 1994; Avanzini et al., 1997; Leonardi and Mietto, 
2000; Avanzini et al., 2001b, 2003; Piubelli et al., 2005; 
Avanzini et al., 2006; Piubelli, 2006; Avanzini and Petti, 
2008). After its discovery, several other dinosaur tracksites 
have been found in Lower Jurassic deposits of the Southern 
Alps sector (Mietto and Roghi, 1994; Avanzini, 1997; 
Leonardi and Mietto, 2000; Mietto et al., 2000; Avanzini, 
2001; Avanzini et al., 2001a, 2001c, 2007b, 2008; Avanzini 
and Petti, 2008; Petti et al., 2008; Petti et al., 2011a, 
2011b; Belvedere et al., 2017).
The track-bearing horizons from the Lavini di Marco are 
exposed due to various landslide events that occurred in 
prehistorical and historical times between 21.200±100 and 
800±200 years B.P. (Martin et al., 2014). Landslide bodies, 
arranged on a WNW dipping monoclinal surface (Piubelli 
et al., 2005), were already described in the 14th century 
by Dante Alighieri in his Divine Comedy, being the first 
to provide a geological interpretation of these landslides 
induced by seismic causes or by erosion at the base of the 
slopes (Romano, 2016).
The Lavini di Marco dinosaur ichnoassemblage consists of 
hundreds of tridactyl footprints, produced by small- to large-
sized theropods, and dozens of quadrupedal narrow-gauge 
trackways, attributed to medium-sized sauropodomorphs 
(Leonardi and Lanzinger, 1992; Leonardi and Avanzini, 
1994; Avanzini et al., 1997, 2003, 2006; Leonardi and 

Fig. 1 - Location of the Lavini di Marco tracksite (Trentino-Alto Adige/Südtirol), modified from Google Earth Pro.
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Mietto, 2000; Piubelli et al., 2005; Piubelli, 2006; Avanzini 
and Petti, 2008; Petti et al., 2020a). The discovery of small 
and elongated tridactyl footprints, assigned by Avanzini et 
al. (2001b) to the ichnogenus Anomoepus, suggested the 
possible occurrence of primitive ornithischians.
The present study aims to update the knowledge of the 
Lavini di Marco tracksite by presenting the georeferenced 
geothematic map of the area, obtained with innovative tools 
(i.e., drones; high-resolution digital photogrammetry).

GEOLOGICAL SETTING

The Lavini di Marco track-bearing surfaces crop out near 
Rovereto (Trentino-Alto Adige/Südtirol, NE Italy), on the 
western slope of Mt. Zugna (central-eastern Southern 
Alps). The trampled surfaces stratigraphically belong to 
the Calcari Grigi group (Hettangian-upper Pliensbachian; 
Avanzini et al., 2007a), exactly to the Monte Zugna 
formation (Bosellini and Broglio Loriga, 1971; Masetti et al., 
1998, 2012; Avanzini et al., 2006; Fig. 4). The Calcari Grigi 
group was deposited within the Trento carbonate platform, 
a palaeogeographic domain characterized by shallow-water 
carbonate sedimentation throughout most of the Early 
Jurassic (Masetti et al., 1998, 2012; Avanzini et al., 2006).
The Monte Zugna fm is represented by light grey to 
whitish, micritic and oolitic-bioclastic limestones, often 
intensely bioturbated, divided into three members, from 
bottom to top: (a) “Lower Subtidal Cyclic Unit” (LSCU); (b) 
“Middle Peritidal Unit” (MPU); (c) “Upper Subtidal Unit” 
(USU; sensu Avanzini et al., 2007a). The Lavini di Marco 
tracksite belongs to the MPU, consisting of alternating 
stromatolitic and dolomitized layers, light grey peloidal 
mudstone, dark grey bioclastic wackestone, and reddish 
mudstone (Avanzini et al., 1997). Here, seven track-layers 
were recognized in a seven meters thick section (Avanzini 
et al., 2006; Avanzini and Petti, 2008). The occurrence of 
the dasycladacean alga Palaeodasycladus mediterraneus 
suggests a Hettangian age for the Lavini di Marco tracksite 
(Avanzini et al., 2006). The stratigraphic succession, WNW 
dipping, records a slope ranging from 20° to 50°.

PREVIOUS ICHNOLOGICAL ANALYSES

The Lavini di Marco ichnosite underwent systematic study 
through preliminary surveys and two major field campaigns 
in June 1992 and June 1993, under the direction of Giuseppe 
Leonardi and Paolo Mietto. This research was financially and 
logistically supported by the Museo Tridentino di Scienze 
Naturali di Trento (nowadays MUSE - Sciences Museum 
of Trento). During these campaigns, approximately 200 
individual dinosaur tracks were cataloged, photographed, 

and classified, and some were molded. Subsequently, more 
footprints were discovered, and the total count reached 
about 800 individual tracks in this locality. The initial study 
of the Lavini di Marco tracksite resulted in a comprehensive 
collective volume publication (Leonardi and Mietto, 2000), 
coordinated by the two museums involved, and with the 
support of the National Research Council (CNR) and the 
Autonomous Province of Trento.
Numerous surveys of the site led to the identification of 
hundreds of dinosaur tracks belonging to both bipedal and 
quadrupedal dinosaurs, preserved as concave epirelief 
(sensu Leonardi, 1987). Initially, six tridactyl morphotypes 
were identified by Leonardi and Mietto (2000), attributed to 
small to medium-sized theropods. The authors compared 
the footprints from Lavini di Marco with the Triassic 
ichnogenus Coelurosaurichnus, the common Jurassic 
ichnogenera Eubrontes and Grallator, and the Cretaceous 
ichnotaxa Bueckeburgichnus and Columbosauripus, but 
they were not formally associated with specific ichnotaxa.
A later study by Piubelli (2006) reduced the number 
of morphotypes to four (LA1, LA2, LA3, LA4) based on 
morphological and morphometric analyses leading to 
the designation of a type specimen for each morphotype. 
Overall, in the analysis conducted by Piubelli et al. (2005) 
and Piubelli (2006) the recognized ichnotaxa are Grallator 
and Kayentapus, the latter representing the most common 
ichnotaxon in the Lavini di Marco site and usually referred 
to a theropod trackmaker close to Dilophosaurus. The 
distribution of the ichnotaxon reported from the Early 
Jurassic of Northern Europe (Gierliński, 1991; Gierliński 
and Alhberg, 1994) and North America (Welles, 1971), 
led Piubelli et al. (2005) to hypothesize a wide connection 
between Laurasia and Gondwana in the Early Jurassic 
represented by the Southern Alps sector. Piubelli et al. 
(2004) also reported a putative synapsid track from the 
Lavini di Marco ichnosite, ascribed to the ichnogenus 
Brasilichnium Leonardi, 1981.
A couple of tridactyl tracks with purported sub-parallel 
traces of metatarsal have been interpreted by Avanzini 
et al. (2001a) as a putative resting posture. The authors 
assigned the footprints to the ichnogenus Anomoepus, 
attributing them to a small ornithischian trackmaker, with 
affinities to tracks described from South Africa and Poland 
(Ellenberger, 1972; Olsen and Galton, 1984; Haubold, 
1986; Gierliński, 1991; Gierliński and Pieńkowski, 1999). 
According to the authors, such attribution could suggest 
a Gondwanan origin for the Lavini di Marco trackmakers; 
however, recent re-analysis has allowed to re-interpret the 
traces of the metatarsals as the interference of separate 
tridactyl footprints rejecting the attribution to Anomoepus 
(Antonelli, 2018; Petti et al., 2020a).
Concerning quadrupedal footprints, Leonardi and 
Mietto (2000) identified several trackways since the first 
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studies, recognizing at least two morphotypes initially 
attributed to sauropod and ornithopod trackmakers. The 
15 short segments of trackways, undoubtedly referable to 
sauropod producers, all narrow-gauge type and with pes 
print up to 52 cm, were compared by the authors to the 
ichnogenera Breviparopus and Parabrontopodus, with a 
putative trackmacker to be found within the Eusauropoda 
clade, in particular Cetiosauridae or Vulcanodontidae 
(Leonardi and Mietto, 2000). The authors also described 
five tracks interpreted as traces of a bipedal to semi-
bipedal producers, referring them to possible ornithopod 
trackmakers; however, according to Sacco (2018) and 
Petti et al. (2020a) it is likely that these footprints all refer 
to sauropod dinosaurs, an alternative hypothesis proposed 
by Leonardi and Mietto (2000) themselves.
A new analysis of the quadrupedal tracks from the Lavini 
ichnosite by Avanzini et al. (2003) led to the description 
and establishment of the new ichnotaxon Lavinipes 
cheminii. According to the authors, it is characterized by 
narrow-gauge trackways, with a pentadactyl U-shaped 
manus (wider than long) and a longer-than-wide tetradactyl 
pes. The authors stressed similarities with the ichnotaxa 
Pseudotetrasauropus and Otozoum, although reporting 
differences in the number and morphology of the digits and 
the type of gait. Based on all traits, according to Avanzini 
et al. (2003) the most plausible putative trackmaker for 
the new ichnotaxon Lavinipes cheminii should be sought 
among primitive sauropods, with greater affinity to the 
basal Eusauropoda.
In 2018, a new project started for the study of the Lavini di 
Marco ichnosite carried out by MUSE, Sapienza University 
of Rome and the Autonomous Province of Trento. After 
an initial survey that led to the recognition of over 700 
tridactyl footprints and numerous quadruped tracks, the 
project consisted of the study of the abundant ichnological 
material, both through traditional ichnological techniques 
and through detailed 3D digital models, combining close-
range and aerial photogrammetry. The result, in addition to 
a new detailed study of the traces, is the realization of the 
first detailed geothematic map of the ichnosite, the subject 
of this contribution. Differently, the abundant ichnological 
material referable to theropod and sauropod dinosaurs, 
reanalyzed through the use of new digital technologies, 
is currently under review and will be presented shortly in 
manuscripts in preparation.

MATERIALS AND METHODS

An area of more than 25,000 m2 was estimated for the track-
bearing surfaces, within an overall surface of 600,000 m2. 
The trampled area was subdivided into five main sectors 
(Fig. 2), ranging from 15,000 to 500 m2 and characterized 

by a high degree of trampling (sensu Lockley, 1991), named 
as follows: i) “Strada Forestale”; ii) “Colatoio Chemini”; iii) 
“Piega”; iv) “Colatoi Inferiori”; v) “Laste Alte”.
The work plan consisted of four steps (Fig. 3): i) cleaning 
of the surface; ii) ichnological survey, supported by using 
close-range photogrammetry; iii) aerial photogrammetric 
survey of each sector; iv) graphical digitization and 
georeferencing of the ichnological data obtained by aerial-
based photogrammetry.
The track-bearing horizon was carefully cleaned, to remove 
debris from each footprint and surrounding surface. A manual 
cleaning allowed to remove of the debris without impacting 
the extremely weak and fractured trampled surface.
Morphological interpretative sketches of each track 
were subsequently drawn in the field with colored 
chalks, to highlight: i) in each track, the outline and the 
anatomical characters of the trackmaker autopods; ii) the 
substrate deformations due to dinosaur trampling; iii) the 
extramorphologies of the footprints, when subjected to mud 
collapse or displacement. Seven different track-bearing 
layers were identified (Avanzini et al., 1997; Leonardi and 
Mietto, 2000), and several sectors are likely characterized 
by undertracks (the deformed layer beneath the true track; 
Milàn and Bromley, 2006).
More than 700 tridactyl footprints, some of which arranged 
in short bipedal trackways, and nine quadrupedal narrow-
gauge trackways were identified. The main ichnological 
parameters were measured following the methods proposed 
by Leonardi (1987) and Thulborn (1990).
A subsequent step consisted in the realization of high-
resolution photogrammetric 3D digital models, both 
via close-range photogrammetric and through the use 
of drones. High-resolution digital photogrammetry is a 
measurement technique that returns metric information 
about an object (shape, position, and size) through the 
acquisition and analysis of a pair of stereometric frames. If 
an object is recorded in at least two images from different 
angles, the different positions of the object in the images 
allow a stereoscopic view of it, by deriving 3D information in 
the overlapping areas of the images captured. Its widespread 
use is due to its reduced time of data acquisition, extremely 
high resolution, and limited costs, as well as the possibility 
to study areas difficult to access and share and quickly 
access data (e.g., Citton et al., 2017; Romilio et al., 2017; 
Petti et al., 2018; Cónsole-Gonella et al., 2021; Romano et 
al., 2022a).
Aerial photogrammetry is based on the acquisition of high-
resolution aerial orthophotos. It uses wide-angle images 
and georeferenced ground points to recreate the geometry 
and topography of a selected area into a three-dimensional 
digital model, where the measurements are recorded in 
a geospatial data file. The resolution and the scale of the 
model substantially depend on the focal width of the camera 
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Fig. 2 - Orthophoto of the whole area of the Lavini di Marco, with superimposed the high-resolution orthophotos of the five 
main dinoturbated sectors.
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Fig.  3 - Ichnological 
mapping at the Lavini di 
Marco ichnosite. A) cleaning 
of the track-bearing 
surface; B, C) interpretative 
drawings of the dinosaur 
footprints; D) close-range 
photogrammetry; E) drone 
photogrammetry.

lens and the height (and thus the distance from the object) 
from which the aerial photos are acquired (Matthews, 
2008). The use of UASs (Unmanned Aerial Systems; i.e., 
drones) for data acquisition greatly improved the quality 
of the aerial photogrammetry, formerly performed with 
helicopters, gliders, airships, or hot air balloons, on which 
digital cameras were installed (e.g., Breithaupt et al., 2004; 
Romilio et al., 2017). This new approach is recently finding 
numerous applications in the geological and paleontological 
field, from the 3D reconstruction of large skeletons 
mounted in museum structures to the reconstructions and 
mapping of outcrops, and 3D detailed mapping of whole 
tracksites (e.g., Citton et al., 2017; Romilio et al., 2017; 
Petti et al., 2018, 2022; Xing et al., 2018, 2020; Filipov 
et al., 2020; Giordan et al., 2020; Cónsole-Gonella et al., 
2021; Honarmand and Shahriari, 2021; Papadopoulou 
et al., 2021; Thomas et al., 2021; Peace and Jess, 2022; 
Romano et al., 2022a, 2022b, 2023; Soncco et al., 2022).
Close-range photogrammetry was carried out on the best-
preserved tracks and trackways, to gain more accurate 
morphological information and anatomical details about the 
trackmaker autopods. For data acquisition, each track was 
photographed turning 360° around it, with four different 
vertical points of view with respect to the surface horizon 
(i.e., 10°, 30°, 60°, and 90°), attempting to maintain a 1 
m distance from the footprint. For each selected track 
about 40 photos were taken, using the digital single-lens 
reflex camera Canon EOS 1300D, equipped with an 18.0 
Megapixel CMOS (APS-C) image sensor and EF-S 18-55 
mm lens. For each analyzed specimen, the processing of the 
images was carried out on Agisoft Photoscan ® Professional 

v. 1.4.5, according to the workflow proposed by Mallison 
and Wings (2014), to obtain a dense point cloud. The latter 
was exported as a .txt file in Golden Software Surfer ® 16 to 
produce a grid file and, finally, a 3D color-coded (i.e., DEM) 
contour map.
Twenty-four GCPs (Ground Control Points, i.e., markers 
used as strongholds for georeferencing) were placed on the 
surface before the aerial survey, and their spatial position 
was recorded via GPS, effectively defining and covering the 
whole area of the Lavini di Marco tracksite. Two different 
drones were used to perform the aerial photogrammetric 
survey: the quadcopters DJI Inspire 2 and DJI Mavic Pro. DJI 
Inspire 2 is equipped with a digital camera ZENMUSE X4S 
(FC6510) with 1” 20 Mpx Exmor R CMOS sensor. DJI Mavic 
Pro is equipped with a digital camera FC220, with 1/2.3” 
12.7 Mpx CMOS sensor. Both drones have a medium flight 
duration of up to 27 minutes. Nine overflights were carried 
out, with flight height between 15 m and 30 m, and 2389 
photos were taken to complete the aerial survey, in time-
lapse mode (photographic shot every 5 seconds). Overall, 
865 images were taken on the “Laste Alte” sector, 368 on 
the “Colatoio Chemini”, 752 on the “Colatoi Inferiori”, 83 
on the “Strada Forestale”, 170 on the “Piega”. Additionally, 
151 images were captured with a flight height of 30 m to 
cover the whole area, thus obtaining the base orthophoto of 
the Lavini di Marco site, on which the detailed orthophotos 
of the main sectors were overlapped. The detail of the aerial 
survey is evidenced by the Ground Sampling Distance 
(GSD), comprised between 0.22 and 0.81 cm/pixel. The 
processing of digital images was made using Pix4Dmapper 
Pro v. 4.2.27, following the same workflow used for the 
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close-range photogrammetry. The obtained products are 
represented by orthophotomosaics and orthoplanes (i.e., 
horizontal planes on which an orthorectification is carried 
out, consisting of a projective transformation of a sloped 
object) of the whole ichnosite, as well as more detailed 
orthophotos focused on the areas with a higher degree of 
trampling. The final map was produced in digital vector 
format and edited in ©Adobe Illustrator.

MAP DESCRIPTION

The map of the Lavini di Marco tracksite was realized 
evidencing five different levels of knowledge, represented 
by dinosaur tracks, vegetation, debris, fractures, and 

anthropic infrastructures (i.e., forest roads, scenic trails, 
and watchtowers), to generate a comprehensive product. 
The scale map is 1:500 (i.e., 1 cm = 5 m). Its relevance 
consists in the accuracy of the information provided. It is 
thus possible: i) to get an overview of the whole tracksite, 
distinguishing the areas covered by the landslide debris 
or by plants, from those where the track-bearing surfaces 
are best exposed; ii) to detect the areas with a high 
degree of trampling, appreciating the richness of the 
tridactyl ichnoassemblage and the numerous quadrupedal 
trackways.
The “Strada Forestale” sector can be accessed from the 
entrance of the paleontological trail. After a few hundred 
meters, eight tridactyl footprints are visible on the left side 
of the path, evidenced by an information board. The analysis 

Fig. 4 - Geological setting of the Lavini di Marco locality and surrounding area (http://patn.maps.arcgis.com).

http://patn.maps.arcgis.com
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started with the already known and well-preserved tridactyl 
tracks ROLM 198-1 and ROLM 198-2 (Fig. 5A-D) and led 
to the discovery of the other specimens. Proceeding on 
the trail, approximately 200 m after the crossroad with the 
“Colatoio Chemini”, on the right a dozen of tridactyl tracks 
occur, including the well-preserved and large-sized ROLM 
137 (Fig. 5E-F). Finally, proceeding southwardly for about 
300 m, another quadrupedal trackway, and numerous 
tridactyl tracks are observable on the left.
The “Colatoio Chemini” consists of a preferred corridor for 
the runoff water, about 200 m long and 6 m wide, eastwardly 
rising almost perpendicular to the “Strada Forestale”. 
It is bordered by a path along which the presence of 
wooden towers allows a panoramic view of the area. In this 
sector, named after Luciano Chemini discovery, the most 
famous dinosaur tracks are preserved (Fig. 6). Almost five 
trackways were referred to sauropods, whereas only one 
trackway and some isolated specimens were attributed to 
theropods (Leonardi and Mietto, 2000). The main issues in 
this area are represented by the progressive weathering of 
the track-bearing surface and the poor degree of footprint 
preservation. The former is evidenced by the discontinuity of 
the track-layer, which, due to runoff waters, was subjected 
to numerous detachments and landslides during the last 
decade. As a result, entire portions of the dinoturbated 
horizons were lost, leading to the exhumation of the 
underlying layers, on which undertracks are sometimes 
visible. On the western side of the “Strada Forestale”, the 
“Colatoio Chemini” continues, revealing the occurrence of 
another isolated quadrupedal trackway.
Rising from the path bordering the “Colatoio Chemini” 
and proceeding to the left, the sector called “Piega” crops 
out; it is represented by an almost vertical wall, where at 
least three trackways occur, two attributed to sauropods 
and one, poorly preserved, to a theropod (Leonardi and 
Mietto, 2000). Among them, the trackway ROLM 26 
is perhaps the most famous and spectacular trackway 
of the ichnosite (Fig.  7A-B), as it seems produced by a 
“rock-climbing dinosaur”, although the surface actually 
represents the hinge of a fold (Leonardi and Mietto, 
2000). A few meters north of the ROLM 26, the ROLM 
28 trackway, attributed to a sauropod, is crossed by the 
ROLM 59, referred to a theropod. Proceeding on the 
scenic path between the “Colatoio Chemini” and the 
“Piega” sectors, it is worth mentioning the occurrence of 
the largest tridactyl track of the Lavini di Marco tracksite, 
the ROLM 219, produced by a large-sized theropod 
(Fig. 7C-D).
The “Colatoi Inferiori” can be reached from a crossroad 
located on the “Strada Forestale” trail (a few meters before 
the “Colatoio Chemini”). This sector ramifies downstream 
from “S.F.”, representing the lower part of the tracksite. The 
Y-shaped configuration has led to the individual arms being 

conventionally known as “sauropod colander” and “theropod 
colander”: in this area, about a hundred theropod footprints 
and two sauropod trackways are indeed preserved.
The “Laste Alte” is the least accessible area of the entire 
ichnosite, due to the slope and slippery surface, which 
is also not equipped for visitors: it is located south of the 
“Colatoio Chemini”, enclosed between the scenic trail and 
the “Strada Forestale” path. It turns out to be the richest 
sector in footprints, some of which extraordinarily preserved. 
Most of the studies in this sector have been concentrated 
in the last 20 years (e.g., Avanzini et al., 2003; Piubelli, 
2006). The ichnological analysis of this sector led Avanzini 
et al. (2003) to establish the new ichnotaxon Lavinipes 
cheminii, typified by the quadrupedal trackway ROLM 577 

Fig. 5 - The tridactyl tracks ROLM 198-1, ROLM 198-2 and 
ROLM 137, occurring on the surfaces around the “Strada 
Forestale” sector: A, C, E) footprint in situ; B, D, F) DEM with 
contour lines (depth scale in m).
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Fig.  7 - The most 
representative dinosaur 
tracks occurring in the “Piega” 
sector and its bordering 
path: A) the trackway ROLM 
26 (geological hammer for 
scale); B) close-up of the first 
steps of the same trackway; 
C) ROLM 219, the largest 
tridactyl tracks of the Lavini 
di Marco ichnosite, and its 
DEM with contour lines in (D). 
Depth scale in m.

Fig. 6 - The “Colatoio Chemini”. On the left, a panoramic view from the bottom of the sector; on the right, the trackways ROLM 9 
(foreground) and ROLM 11 (background).
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(Figs. 8-9). The latter is a narrow-gauge quadrupedal or 
semi-bipedal trackway, with manus and pes inward and 
outward oriented with respect to the midline. Both fore- 
and hindlimb impressions are tetradactyl, as evidenced by 
DEMs. The study carried out in 2018 also led to assign to 
Lavinipes cheminii the trackways ROLM 11 and ROLM 26, 
preserved on the “Colatoio Chemini” and “Piega” sectors, 
respectively (Sacco, 2018).
However, the sector of “Laste Alte” is clearly theropod-
dominated (Fig. 9), revealing four smaller areas with a very 
high degree of trampling. It is worth noting the abundance 
of very small-sized tridactyl tracks (no longer than 10 cm) in 
the southernmost of these areas.
As already stressed above, the results of the ichnological 
analysis of both quadrupedal trackways and tridactyl tracks 
will be discussed in forthcoming papers.
All the analyzed dinosaur tracks from the Lavini di Marco 
ichnosite are represented in blue in the geothematic map, 
and for the most important specimens (both trackways and 
isolated footprints) the acronym is provided.

DISCUSSIONS

The last two decades have witnessed substantial 
development in photogrammetry, stemming from pioneering 
work in the field of paleontology (Breithaupt and Matthews, 

2001; Breithaupt et al., 2001). With the introduction of 
new open-source software and progressively reduced 
processing times, this digitalization technique is becoming 
the new standard in many paleontological studies.
Photogrammetry, in fact, has been extensively applied 
in paleontology, enabling the easy manipulation and 
digital study of specimens that would be otherwise either 
fragile or extremely heavy. Its applications range from the 
reconstruction of skeletons in museum structures (e.g., Fau et 
al., 2016; Romano et al., 2018, 2022a, 2023, 2024; Rubidge 
et al., 2019; Van den Brandt et al., 2024), body mass studies 
in fossil tetrapods (e.g., Gunga et al., 1999, 2008; Bates et al., 
2015; Brassey et al., 2015; Basu et al., 2016; Brassey, 2016; 
Reolid et al., 2021; Romano and Rubidge, 2021; Romano 
et al., 2021a, 2021b, 2022b, 2023; Hart et al., 2022), 
locomotion and biomechanics (e.g., Hutchinson et al., 2005; 
Gatesy et al., 2009; Mallison, 2010; Bates and Schachner, 
2012; Reiss and Mallison, 2014; Otero et al., 2017, 2019; 
Sellers et al., 2017; Bishop et al., 2018; Klinkhamer et al., 
2018a, 2018b; Díez Díaz et al., 2020; Vidal et al., 2021), 
ichnology (e.g., Petti et al., 2008, 2018, 2020b, 2022; 
Mallison and Wings, 2014; Matthews et al., 2016; Citton et 
al., 2015; 2019; 2020; Antonelli et al., 2023a, 2023b), fossil 
invertebrates (e.g., Polonkai et al., 2017; Peterman et al., 
2020) and feeding modes (Hernesniemi et al., 2011; Young 
et al., 2012; Cuff and Rayfield, 2015; Lautenschlager et al., 
2016; Konietzko-Meier et al., 2018).

Fig. 8 - Orthophoto of the “Colatoi Inferiori” with a close-up of the main dinoturbated sectors.
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Fig. 9 - The trackway ROLM 577 (Lavinipes cheminii). A) orthophoto;  
B) interpretative drawing.
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The use of photogrammetry has proven to be extremely 
important, especially in the field of ichnology. The 
photogrammetric 3D modeling of footprints firstly allows 
for a more objective representation and communication 
of tetrapod tracks, as a drawing always reflects the 
interpretation of an author, and different authors may have 
varying sensitivities even when describing and interpreting 
the same object. Furthermore, high-resolution models, 
achieved using contour lines and false colors, enable a 
detailed study of the preserved morphologies of autopods. 
This serves as a supporting element in the search for the 
trackmaker, highlighting characteristics often not visible 
to the naked eye directly in the field. The analysis of 
differential depth in different portions of the footprint also 
allows for the reconstruction of the complex movement 
of the autopodium in the substrate. This analysis enables 
the examination of the axes of maximum load during a 
locomotor cycle, providing significant insights into the 
fields of biomechanics and locomotion (e.g., Citton et al., 
2015; Hatala et al., 2016a, 2016b, 2016c; Romano et al., 
2016, 2020; Marchetti et al., 2017; Lallensack et al., 2018; 
Mujal et al., 2020; McNutt et al., 2021).
The power of the photogrammetric method is exemplified 
by applications that have allowed the three-dimensional 
reconstruction of fossil sites that were lost. This has been 
achieved through the use of historical photos taken in the 
past during fieldwork when the method was not yet available 
(Falkingham et al., 2014; Lallensack et al., 2015).
Unmanned Aerial Systems (i.e., drones) significantly 
improved the quality of aerial photogrammetry with 
respect to the past tools (e.g., helicopters, gliders, and hot-
air balloons with digital cameras on board; see Breithaupt 
et al., 2004; Romilio et al., 2017). The affordable costs, 
the simplicity of the georeferenced data acquisition, and 
the quick processing workflow allow the production of 
multiple results with great accuracy and less effort.
The digitalization in vector format of the track-bearing 
surfaces from high-resolution orthophotos permits 
reporting with higher detail the relative position of 
the dinosaur footprints, also allowing to avoid the use 
of acetate overlays to reproduce and measure whole 
trackways. Additionally, the chance to accurately check 
the orthophotos allows to add of numerous features useful 
to evaluate and plan the conservation of the track layers, 
such as vegetation, fractures, and possible landslide 
niches. The position of different trails and watchtowers 
provides the opportunity to plan a wider open-air museum 
itinerary, emphasizing the most interesting areas.
For all the above, also in the present case, close-range 
photogrammetry supported the ichnological analysis, 
allowing us to obtain more accurate information about 
the morphological features of the dinosaur tracks and 
thus enhance their ichnotaxomomic assignment. The 

great improvement provided by the drone survey and 
the geothematic map herein presented is due to the 
comprehensive knowledge obtained by using this tool at 
macro- and meso-scale. Indeed, photogrammetry proves 
particularly suitable for geological studies, enabling 3D 
representation at various scales, ranging from millimetric 
features to the reproduction of the entire geological site or 
context (Cipriani et al., 2016; Romano et al., 2019; Ziegler 
et al., 2020). Dinosaur tracks, fractures, vegetation cover, 
and debris are reported in detail, with a decimeter spatial 
accuracy, thus recording the ichnological record and 
providing useful information from a structural logistical, and 
conservational point of view. As a result, the Lavini di Marco 
map can represent essential support for the management, 
future dissemination, and outdoor musealization of this 
paleontological heritage, developing the prerequisites for 
sustainable geotourism, based on a long-term conservation 
plan.
Unlike body fossils, in the vast majority of cases, footprint 
specimens remain at the original discovery site, including 
specimens on which new ichnotaxa are established. All 
geosites are subject to various scales of natural evolution, 
involving weathering, erosion, and mechanical destruction 
of rock masses. These processes could lead the tracks to 
conditions significantly different from their original state of 
discovery and description (Ziegler et al., 2020). Moreover, in 
unfortunate cases, specimens can be vandalized, destroyed, 
or stolen, eliminating the comparative material for future 
studies. For these reasons, photogrammetry of entire 
sites and the deriving comprehensive geothematic map of 
detailed features prove to be indispensable tools for digitally 
preserving specimens, geological contexts, and outcrops, 
often of unique paleontological, paleoenvironmental, and 
paleobiogeographic importance.
Thus, also in the case of Lavini di Marco ichnosite, the 
geothematic map and the color-coded three-dimensional 
images may represent preliminary tools for the researchers 

Fig. 10 - Manus-pes couple ROLM 577/5, holotype of Lavinipes 
cheminii: A) footprints in situ; B) DEM with contour lines 
(depth map in m).
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interested in the study of the tracksite or will permit to easily 
analyze the ichnoassemblage without the need to access the 
area. An expanding field in dissemination science, especially 
after the recent Covid-19 pandemic, is the development and 
implementation of Virtual Field Trips. These trips enable 
remote digital navigation of sites with varying degrees of 
knowledge, allowing interaction with the physical features of 
interest (Ziegler et al., 2020). In the context of democratizing 
science, virtual tours provide remote access to anyone 
interested, who may not have the economic means to visit the 
site in person. They also facilitate virtual excursions to rugged 
areas, making them accessible even for individuals with 
limited mobility. The tool can also be useful for teachers and 
instructors in the preparatory phase of an in-person field visit, 
with the idea that such tools should not replace active visits 
to natural sites but rather serve as additional support in the 
analysis and dissemination of content. In this regard, for the 
Lavini di Marco site, possible future interactive development 
could involve the installation of QR codes in specific areas 
of the ichnosite. By using a tablet or simply a personal 
smartphone, visitors could access numerous multimedia 
content, such as navigable 3D models of individual 
footprints or entire trackways, immersive reconstructions 
of the palaeoenvironment, and in vivo reconstructions of 
the dinosaurs that produced the tracks. This tool, in our 
opinion, should not replace the in-person visit to the site, 
which we consider crucial, but would provide a wealth of 
additional material essential for effective dissemination and 
popularization of science to as wide an audience as possible.
Likewise, the photogrammetric products (i.e., orthophotos 
and 3D models) will be useful for the protective operations 
and multi-temporal monitoring of this area, affected by 
weathering, landslides and massive fracturing events. 
The realization of this geothematic map is strategic for the 
ongoing project of valorizing the Lavini di Marco tracksite, 
one of the most internationally important ichnosites that 
can become truly touristically relevant when it is equipped 
with the necessary infrastructure, the right promotion and an 
innovative visit proposal.
The geothematic map herein presented describes one of 
the larger dinosaur tracksites in Europe, whose ichnological 
richness represents an important milestone for knowledge 
about the dinosaur evolution during the Early Jurassic.

CONCLUSIONS

The geothematic map of the Lavini di Marco ichnosite 
(Trentino-Alto Adige/Südtirol, NE Italy) represents the 
most comprehensive knowledge tool of the whole track-
bearing area. It provides information about the rich 
ichnoassemblage, precisely reporting the position of the 
dinosaur tracks and trackways, and also describes other 
elements, such as vegetation, debris, fractures, forest 
roads, panoramic trails, and watchtowers.
The analysis of the whole tracksite was conducted combining 
traditional ichnological methods and technological tools, 
such as close-range and drone photogrammetry.
Close-range photogrammetry allowed to improve the 
interpretation of the dinosaur footprints, recognizing with 
higher accuracy their morphological details.
Drone photogrammetry led to producing numerous detailed 
and georeferenced orthophotos of the track-bearing area, 
aimed at digitizing in vector format dinosaur tracks and the 
other elements with a decimeter accuracy, thus mapping 
the ichnosite.
The products obtained with close-range and drone 
photogrammetry represent complete documentation 
that will be useful for future work of virtual and digital 
dissemination, valorization, conservation, and open-air 
musealization of the tracksite.

ELECTRONIC SUPPLEMENTARY MATERIAL 

This article contains electronic supplementary material (Geothematic 
map of the Lavini di Marco tracksite).
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